DIPARTIMENTO DI INGEGNERIA CORSO DI DOTTORATO IN INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE -PHD COURSE IN INDUSTRIAL AND INFORMATION ENGINEERING -36TH CYCLE

State of the Art:	Development of procedures for fatigue-based design and vibration qualification of mechanical components Structures and mechanical systems are often exposed to complex vibratory excitations. Examples are vehicles excited by road irregularity and engine vibrations, off- shore platforms and wind turbines exposed to waves or wind, aeronautical and aerospace components subjected to vibrations arising from aerodynamics and engine (cf. reference [11]). In such examples, the complex excitation
c e s v t t r a t t	complex vibratory excitations. Examples are vehicles excited by road irregularity and engine vibrations, off- shore platforms and wind turbines exposed to waves or wind, aeronautical and aerospace components subjected to vibrations arising from aerodynamics and engine (cf.
	and the resulting timevarying stresses are stochastic and multiaxial, which means that there are multiple signals taking on random values at each time instant. A wing, for example, may be subjected simultaneously to longitudinal, vertical and lateral excitations coming from the aerodynamic forces. In most critical parts, such excitations and stresses may cause a progressive fatigue damage possibly leading to unexpected failures [3, 16]. A comprehensive design procedure requires that: i) the service life of the system is preliminary estimated through virtual models implementing suitable criteria for estimating the amount of fatigue damage [18, 19, 25, 28]; i) experimental tests are carried out on fullscale prototypes by accelerated vibration tests (on ground or in aboratory), which accurately replicate in a shorter time the same fatigue damage caused by actual excitations [2, 17]. The design by numerical modeling and fatigue criteria can profitably exploit a frequency-domain approach based on 'spectral methods', in which the service life is directly estimated from the frequency spectrum (Power Spectral Density, PSD) characterizing the excitation or the stress signal [5, 6, 8, 12, 14]. The advantage of using a PSD, which can be calculated by a frequency-domain structural dynamic analysis, is to avoid time-consuming transient dynamic simulations and direct processing of long time- nistories. Not only does the design need to apply spectral methods suitable for uniaxial stress, but it also requires those for multiaxial stress [22, 27]. One limitation, nowever, is that the amount of published experimental data for calibrating existing, or newly-developed, fatigue criteria is often very limited. This emphasizes the need,
c	rom one hand, to gather additional experimental results carried out by shakers or slip-tables, with simple specimens and excitations. The improvement to the existing

	procedures is the main aim of the project. This improvement, partly already started by the project proposers [1, 7, 10, 24], will provide the manufacturing industry with more reliable methods for fatigue-based design.
Short description and objectives of the research activity:	The project is focused on the virtual design and experimental qualification of mechanical systems undergoing complex vibratory excitations, which may cause fatigue failures. These topics are very relevant for several industrial fields (aerospace, automotive, marine, automation). The design usually exploits theoretical/numerical models followed by accelerated vibration-based fatigue life tests. Standards make use of test tailoring procedures, in which field data are processed to synthesize excitations used in laboratory tests or to define on field accelerated tests. A critical issue is how to define a test excitation (experimental or virtual) which replicates - in a short duration - the fatigue damage experienced over the entire lifetime, while also accurately reproducing the frequency content of the real excitation. A careful literature survey allows to identify several aspects in the current procedures which can be improved, thus outlining the original contribution of the project. The project will overcome such limitations by developing a new vibration qualification procedure both numerical and experimental.
Bibliography:	 [1] Angeli A. et al. Synthesis of Sine-on-Random vibration profiles for accelerated life tests based on Fatigue Damage Spectrum equivalence. Mech. Syst. Signal Proc., 2018, vol. 103:340-351 [2] Ashmore S.C. et al. Accelerated service life testing of automotive vehicles on a test course. Int. J. Vehicle System Dynamics 1992, vol. 21 (2):89-108 [3] Benasciutti D. Fatigue analysis of random loadings: a frequency domain approach. LAP Lambert Academic Publishing; 2012 [4] Benasciutti D. Some analytical expressions to measure the accuracy of the "equivalent von Mises stress" in vibration multiaxial fatigue. J. Sound Vib. 2014, vol. 333(18):4326-4340 [5] Benasciutti D. et al. Recent developments in frequency domain multi-axial fatigue analysis. Int. J. Fatigue 2016, vol. 91(2):397–413 [6] Bishop N.W.M. and Sherratt F. Finite element based fatigue calculations. NAFEMS, 2000 [7] Capponi L. et al. Non-stationarity index in vibration fatigue: Theoretical and experimental research, Int. J. Fatigue 2017, vol. 104:221-230

[8] Carpinteri A. et al. A review of multiaxial fatigue criteria for random variable amplitude loads. Fatigue Fract. Eng.
Mater. Struct. 2017, vol. 40(7):1007-1036
[9] Cianetti F. et al. The design of durability tests by fatigue

damage spectrum approach, Fatigue Fract. Eng. Mater. Struct. 2018, vol. 41(4):787-796

[10] Cornelis B. et al. Shaker testing simulation of non Gaussian random excitations with the fatigue damage spectrum as a criterion of mission signal synthesis", Proc. of ICoEV 2015, Slovenia, 2015, pp. 763-772

[11] Crandall S.H. and Mark W.D. Random vibration in mechanical systems, Academic Press Inc. 1963
[12] Cristofori A. et al. A stress invariant based spectral method to estimate fatigue life under multiaxial random

loading. Int. J. Fatigue 2011, vol. 33(7):887-899 [13] Cristofori A. and Benasciutti D. (2014). Projection-by Projection approach: a spectral method for multiaxial random fatigue. SAE Technical Paper n. 2014-01-0924 [14] Habtour E. et al. Review of response and damage of linear and nonlinear systems under multiaxial vibration. Shock Vib. 2014, vol. 2014, article ID 294271

[15] Hieber G.M. Use and abuse of test time exaggeration factors. Test Engineering and Management-New Jersey, 1999, 61:14-16

[16] Lalanne C. Mechanical Vibration and Shock Analysis –
 Volume 4: Fatigue Damage. 2nd ed., John Wiley & Sons, Inc
 – ISTE, London, 2009

[17] Lalanne C. Mechanical Vibration and Shock Analysis – Volume 5: Specification Development. 2nd ed., John Wiley & Sons, Inc – ISTE, London, 2009

[18] Larsen C.E. and Irvine T. A review of spectral methods for variable amplitude fatigue prediction and new results, Procedia Eng. 2015, vol. 101:243–250

[19] Marquis G. State-of-the-art and future trends in multiaxial fatigue assessment. Mater. Test. 2005, vol. 47(5):260–6

[20] Miles J.W. On Structural fatigue under random
loading. J. Aeronautical Sciences 1954, vol. 21:753-762
[21] MIL-STD-810G, Department of defense test method standard for environmental engineering considerations and laboratory tests. US Dep. Defense 2008
[22] Niesłony A. and Macha E. Spectral method in

multiaxial random fatigue. Springer, 2007

[23] Niesłony A. et al. The use of spectral method for fatigue life assessment for non-Gaussian random loads, Acta Mechanica et Automatica 2016, vol. 10 (2):100-103
[24] Palmieri M. et al. Non-Gaussianity and non-

stationarity in vibration fatigue. Int J Fatigue 2017, vol. 97:9-19

[25] Papadopoulos I.V. et al. A comparative study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 1997, vol. 19(3):219–35

Contact (s)	Filippo.cianetti@unipg.it
Scientific coordinator (s)	Prof. Filippo Cianetti
	 multiaxial fatigue failure for structures undergoing random vibrations, Fatigue Fract. Eng. Mater. Struct. 2001, vol. 24(11):715-727 [28] Preumont A. and Piefort V. Predicting random high-cycle fatigue life with finite elements, J. Vib. AcoustTrans ASME 1994, vol. 116(2):245-248 [29] Smallwood D.O.S. Generating non-Gaussian vibration for testing purposes. Sound Vib. 2005, vol. 39(10):18-24 [30] Steinwolf A. Vibration Testing by Non-Gaussian Random Excitations with Specified Kurtosis. Part I: Discussion and Methods, J. of Testing and Evaluation, 2014, Vol. 42(3):659-671 [31] Troncossi M. and Rivola A. Experimental HALTs with Sine-on-Random Synthesized Profiles, Vibroengineering Procedia, 2017, Vol. 1:34-39 [32] Wolfsteiner P. and Breuer W. Fatigue assessment of vibrating rail vehicle bogie components under non-Gaussian random excitations using power spectral densities. J. Sound Vib. 2013, vol. 332 (22):5867-5882 [33] Zanellati D. et al. Vibration fatigue tests by tri-axis shaker: design of an innovative system for uncoupled bending/torsion loading. Procedia Structural Integrity 2018, vol. 8:92-101
	[26] Piersol A.G. (1993). Accelerated vibrationtestingproceed with caution. Tustin Training News[27] Pitoiset X. et al. Spectral methods to estimate local