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Title of the research activity: Development of procedures for fatigue-based design and 

vibration qualification of mechanical components 

State of the Art: Structures and mechanical systems are often exposed to 
complex vibratory excitations. Examples are vehicles 
excited by road irregularity and engine vibrations, off-
shore platforms and wind turbines exposed to waves or 
wind, aeronautical and aerospace components subjected 
to vibrations arising from aerodynamics and engine (cf. 
reference [11]). In such examples, the complex excitation 
and the resulting timevarying stresses are stochastic and 
multiaxial, which means that there are multiple signals 
taking on random values at each time instant. A wing, for 
example, may be subjected simultaneously to longitudinal, 
vertical and lateral excitations coming from the 
aerodynamic forces. In most critical parts, such excitations 
and stresses may cause a progressive fatigue damage 
possibly leading to unexpected failures [3, 16]. A 
comprehensive design procedure requires that: i) the 
service life of the system is preliminary estimated through 
virtual models implementing suitable criteria for 
estimating the amount of fatigue damage [18, 19, 25, 28]; 
ii) experimental tests are carried out on fullscale 
prototypes by accelerated vibration tests (on ground or in 
laboratory), which accurately replicate in a shorter time 
the same fatigue damage caused by actual excitations [2, 
17]. The design by numerical modeling and fatigue criteria 
can profitably exploit a frequency-domain approach based 
on ‘spectral methods’, in which the service life is directly 
estimated from the frequency spectrum (Power Spectral 
Density, PSD) characterizing the excitation or the stress 
signal [5, 6, 8, 12, 14]. The advantage of using a PSD, which 
can be calculated by a frequency-domain structural 
dynamic analysis, is to avoid time-consuming transient 
dynamic simulations and direct processing of long time-
histories. Not only does the design need to apply spectral 
methods suitable for uniaxial stress, but it also requires 
those for multiaxial stress [22, 27]. One limitation, 
however, is that the amount of published experimental 
data for calibrating existing, or newly-developed, fatigue 
criteria is often very limited. This emphasizes the need, 
from one hand, to gather additional experimental results 
carried out by shakers or slip-tables, with simple specimens 
and excitations. The improvement to the existing 



procedures is the main aim of the project. This 
improvement, partly already started by the project 
proposers [1, 7, 10, 24], will provide the manufacturing 
industry with more reliable methods for fatigue-based 
design. 
 
 

Short description and objectives of the 
research activity: 

The project is focused on the virtual design and 
experimental qualification of mechanical systems 
undergoing complex vibratory excitations, which may 
cause fatigue failures. These topics are very relevant for 
several industrial fields (aerospace, automotive, marine, 
automation). The design usually exploits 
theoretical/numerical models followed by accelerated 
vibration-based fatigue life tests. Standards make use of 
test tailoring procedures, in which field data are processed 
to synthesize excitations used in laboratory tests or to 
define on field accelerated tests. A critical issue is how to 
define a test excitation (experimental or virtual) which 
replicates - in a short duration - the fatigue damage 
experienced over the entire lifetime, while also accurately 
reproducing the frequency content of the real excitation. A 
careful literature survey allows to identify several aspects 
in the current procedures which can be improved, thus 
outlining the original contribution of the project. The 
project will overcome such limitations by developing a new 
vibration qualification procedure both numerical and 
experimental. 
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